Basic Immunology

Lectures 13-14.

Humoral immune responses:

Extrafollicular reaction and germinal center

reactions - affinity maturation and isotype switch.

Phases of B-cell development

Peripheral primary B-cell differentiation

Organization of the naive B-cell pool

Type of difference	Subset	Characteristics	
Developmental origin	B-1	Fetal hematopoietic stem cell; self-renewal, low- affinity autoantibody production (TdT-independent BcR), dominance in neonates and CLL, located in body cavities. (CD5+, CD43+, IgM++/IgD+)	
	B-2	Postnatal bone marrow-derived	
Tissue compartmentalization (within the B-2 subset)	Follicular B cell (FoB)	Distributed in peripheral lymphoid tissues, recirculate (IgM+/IgD++, CD21+, CD23++).	
	Marginal zone B cells (MZB)	Located in the splenic MZ (in humans also in MALT) with Ig phenotype similar to B-1 B cells, adult BM origin, distinct developmental regulation to Fo B cells, relatively sessile. (IgM++/IgD+, CD21++, CD23+/-)	
Functional specialization	Regulatory and other B cells (Bregs)	Production of IL-10 and GM-CSF	
Age-related appearance	Aging-associated B cells (ABC)	Increased presence in elderly and with autoimmune diseases (T-bet/CD11c)	

B cell subsets and their characteristics

- B-1 B cells: embryonic development, self-renewal, production of lowaffinity autoantibodies, frequent occurrence in neonates and B-CLL patients, body cavity residence (in mice).
 (CD5+, CD43+, IgM++/IgD+)
- Marginal zone B cells: Bone marrow origin, Ig isotype phenotype similar to B-1 B cells, different developmental requirements from follicular B cells, relatively sessile/non-migratory cells.

(IgM++/IgD+, CD21++, CD23+/-)

 Conventional follicular B cells. Bone marrow origin, recirculate. (IgM+/IgD++, CD21+, CD23++).

B-cell sensors

Current Opinion in Immunology

Forms of antibody production

- B-1 B cells: IgM/IgA secretion (constitutive gut/spleen axis: PEC B-1 cells ↔ spleen ↔ gut lamina propria PC?)
- **B-2 B cells:** differentiation following antigenic stimulation
 - Extrafollicular (plasmacellular) reaction (throughout Tindependent & early stage of T-dependent humoral immune responses)
 - Germinal center reaction (advanced stage of T-dependent humoral immune responses)

Role of antigen in defining the form of antibody productions

Type of antigen	Type of early reaction	Type of late reaction	Result
T-independent	Plasmacellular reaction (3-14 days)	-	Serum IgM + Memory -
T-dependent	Plasmacellular reaction (3-7 days)	Germinal center reaction (7-14 days)	Serum IgM/G + Memory +

Follicular or extrafollicular pathway: balance between Bcl-6 & Blimp-1

T/B boundary

Follicular pathway:

Bcl-6 1 : Blimp-1 inhibition PAX-5: XBP-1 inhibition *Result: Centroblast*

Extrafollicular pathway:

Activated B cells

Blimp-1 1: inhibition of PAX-5 target elements (BcR, CD19, etc) *Result: Plasmablast*

Main cellular components involved in germinal center reaction

- B-2 B cells
 - MZ B cells: early response/IgM/Ag-transport
 - Fo B cells: quasi-clonal expansion
- **T cells:** T_{FH} differentiation
- "Tingible body" macrophages (TBM): phagocytosis of dead cells
- **FDC:** Ag-retention
- (LTi: remodeling of lymphoid tissue following immune responses??)

Main events during humoral immune responses I. B-cell activation and relocation

1. Activation:

B cell

"1. signal": BcR antigen recognition
 "2. signal": Ligand binding of co-receptors
 (a) TI-1 antigen
 (b) TD antigen
 T_H cell
 (12)

B cell

CD40/CD40L

2. Relocation: Follicle → T/B boundary Resting B cell: CXCR5 > CCR7 Activated B cell: CXCR5 < CCR7

I. phase: Extrafollicular reaction

II. phase: Formation of germinal center

Nature Reviews | Immunology

T_{FH} differentiation: T-B communication in activation

GC structure: dynamic DZ/LZ polarization, centroblast/centrocyte segregation

Paradox: motile cells \leftrightarrow fixed GC/DZ

(1) T-zone/Follicle: CCR7/CXCR5 - CCL21/CXCL13

(2) LZ:DZ: CXCR4⁻/CXCR5⁺ : CXCR4⁺/CXCR5⁺ - CXCL12/CXCL13

Partner cells: GC LZ: FDC (CXCL13), GC DZ: CXCL12-producing stromal cell (CRC)

Others: S1P (sphingosine-1-phosphate) - S1PR3, GGG (geranylgeranyl glutathione) - P2RY8

(Significance: mutations in aggressive B-cell lymphomas \rightarrow dissemination)

FDC: CXCL12<CXCL13 CRC: CXCL12>CXCL13

Follicular dendritic cells: GC organizers and cellular mediators of B-cell selection

FDC:

- Probably local mesenchymal origin
- Non-phagocytic, non-adherent
- Surface markers: CD21/35, FcγR, inducible
 VCAM-1 Centroblast binding
- LTβR-dependent differentiation, TNF-dependent tissue location
- Long-term retention of antigens as immune complexes (iccosome)

Role of polarized T_{FH} cells in Ig isotype regulation

Connection of T_{FH} - FDC - B cell interactions during GC reactions

- MHC/Ag presentation
- Co-stimulatory ligands (CD40L, ICOSL)
- TNF/LT ligands FDC maintenance

- Immunocomplex retention,
- BAFF production,
- CXCL13 production

T_{FH}:

- Co-stimulatory molecules (CD40, ICOS)
- IL21 production
- Other cytokines Ig isotype switch

Mechanism of affinity maturation

- 1. BcR antigen-binding T-cell contacts are established.
- Double-strand DNA breakage (blunt ends) at CDRs (and also within <u>Bcl-6 & c-myc</u>).
- 3. AID (activation-induced cytidine deaminase), free 3' &
 - 5' ends are formed
- 4. Single (repeatable) nucleotide-exchange: error-prone DNA-polymerase.

Ig-isotype expression : Mechanism of recombination

Ig-isotype expression: Cytokine regulation

Mechanism of cell death

BcR & CD40 stimulation: Ag & CD40L

Extrinsic path:

Fas expression enhances: Ligand binding

Caspase 8 induction

Intrinsic path:

Repeated stimulation of BcR and CD21 leads

to activation of anti-apoptotic Bcl-2 activation;

stabilization of mitochondrion membrane

Decision points in B-cell differentiation

Alterations of Ig gene and their characteristics

<i>lg gene</i> alteration	Ag/AID	RAG-I/II	Promotes survival	Cytokine regulation	Effector mechanism
VDJ (H/L)	-	+	+	-	-
Affinity maturation	+	-	+	-	-
lsotype switch	+	-	-	+	+
Protein alteration				mlg → sol. lg	

Groups of B cells with regulatory functions

Breg: regulatory B cells (mediated by IL-10 and other factors)

- Identification: Removal of B cells led to deterioration of autoimmune diseases and course of chronic inflammation
- Origin: Possibly a distinct differentiation group induced upon (a) BcR stimulation and TLR2/4/9 activation, (b) IFNα/CD40 engagement (c) upon IL-35/IL-1β/IL-6 effects.
- Regulatory functions: Mediated by (a) IL-10 (b) TGFβ, (c) FasL, PD-L1 in the early phase of immune responses
- *Therapeutic significance*: B-cell depletion in the early phase of rejection enhances, while in the later phase suppresses rejection.

ABC: Age-associated B cells/T-bet+/CD11c+ (Th1 TF/DC-marker)

- Identification: after immunization with intracellular pathogens, amongst splenic B cells based on cell surface features (CD11c expression)
- Origin: uncertain, after BcR/TLR7 stimulation of B cells
- Regulatory functions: Promotion of IL-10/TNF/Th17 commitment
- Therapeutic significance: Due to BAFFR⁺ competition with Fo and MZ B cells and bone marrow primary B-cell formation
 - \rightarrow B-cell lymphopenia in the elderly with the relative dominance of ABC cells (CD21⁻/CD23⁻).